If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16k^2-24=0
a = 16; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·16·(-24)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{6}}{2*16}=\frac{0-16\sqrt{6}}{32} =-\frac{16\sqrt{6}}{32} =-\frac{\sqrt{6}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{6}}{2*16}=\frac{0+16\sqrt{6}}{32} =\frac{16\sqrt{6}}{32} =\frac{\sqrt{6}}{2} $
| 0.052+0.9z=51 | | -7-2x=-8-3x | | -9=3x+15 | | 7-(2x/9)=15 | | 6x-50=x-20 | | 4x+2(7x-11)=176 | | x^2+5x-134=0 | | 5-x2=5x-7 | | w+7+w=2w-9 | | ?*29+46-x=404 | | c=(3.14)(30) | | 3z+2-9=-29 | | 5s+29=109 | | (7y+7)-(5+6)=4 | | 2w-11=3w+5 | | 5(2x+7)-4=10x-7 | | x=3x8 | | 2x-5/3+1+X/2=3x-x+17/6 | | 5x+33+47=180 | | -6=4(x+5) | | 5c-4-6c=-28 | | c=(3.14)(20) | | 3^4*3^x=(3^5)^4 | | 5c+4-6c=-28 | | 28=2(X+4)+2x | | 15v-1=8v-20 | | 2x+5(6x-15)=85 | | 2(a+5)=6 | | 17=-4n-7 | | 2(3n+7)=80 | | 8g/4=g19 | | 3x×27x=16 |